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Abstract

The time evolution of a charged point particle is governed by a second-order
integro-differential equation that exhibits advanced effects, in which the particle
responds to an external force before the force is applied. In this paper, we
give a simple argument that clarifies the origin and physical meaning of these
advanced effects, and we compare ordinary electrodynamics with a toy model
of electrodynamics in which advanced effects do not occur.

PACS numbers: 03.50.−z, 03.50.De, 03.50.Kk, 11.10.−z, 11.10.Kk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Charged point particles in classical electrodynamics obey an equation of motion, known
as the Lorentz–Dirac equation, that is third order in proper time, and therefore presents
various difficulties [1–4]. In particular, the Lorentz-Dirac equation admits unphysical runaway
solutions, in which the particle accelerates without bound even in the absence of an externally
imposed force. The runaway solutions can be eliminated by replacing the Lorentz–Dirac
equation with a second-order integro-differential equation, but this equation has problems of
its own: it exhibits advanced effects, in which the particle responds to an external force before
the force has been applied.

In this paper, we give a simple argument that clarifies the origin and physical meaning
of these advanced effects, and we compare ordinary electrodynamics with a toy model of
electrodynamics in which advanced effects do not occur. The toy model is closely analogous
to ordinary electrodynamics; for example, there are fields that correspond to the electric
and magnetic fields, and these fields mediate an interaction between charged particles and
support freely propagating radiation. The toy model, however, does not exhibit the conceptual
problems that plague ordinary electrodynamics; for example, the self-energy of a point particle
does not diverge, and there are no advanced effects. Thus, the toy model shows that it is
possible to construct a mathematically consistent theory of coupled particles and fields that
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is not subject to these pathologies. By performing a detailed comparison between the toy
model and ordinary electrodynamics, we can gain insight into the conceptual foundations of
electrodynamics and into the meaning of the advanced effects.

This paper is organized as follows. In section 2, we briefly review the Lorentz–Dirac
equation of motion, the corresponding integro-differential equation of motion and the causality
problems associated with it. In section 3, we consider a spatially extended charged particle
and give a simple physical argument that explains the origin of the advanced effects. In
section 4, we introduce the toy model of electrodynamics. In section 5, we consider a spatially
extended particle in the toy model and derive analogs to the various equations of motion for
electrodynamics.

The following notation is used in this paper. The function ε(x) is the sign function, defined
such that ε(x) = 1 if x > 0, ε(x) = 0 if x = 0, and ε(x) = −1 if x < 0. The function θ(x)

is the step function, defined such that θ(x) = 1 if x > 0, θ(x) = 1/2 if x = 0, and θ(x) = 0
if x < 0. The metric tensor ημν is defined such that η00 = 1, η11 = η22 = η33 = −1. The
3-vector component of a 4-vector is denoted by bold-face type; for example, xμ = (x0, x).

2. The Lorentz–Dirac equation

Consider a point particle coupled to the electromagnetic field. We will let m and e denote the
mass and charge of the particle and let zμ(τ ) denote the position of the particle at proper time
τ . Also, we will define vμ = dzμ/dτ to be the velocity of the particle and aμ = dvμ/dτ to be
its acceleration. The equation of motion for the particle is

maμ = K
μ

f + K
μ
ext, (1)

where K
μ

f is the force exerted on the particle by the electromagnetic field and K
μ
ext is an

arbitrary externally imposed force. For simplicity, we will assume that K
μ
ext depends only on

the proper time τ , and not on the position or velocity of the particle. The force K
μ

f is given by

K
μ

f (τ) = eFμν(z(τ ))vν(τ ), (2)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field-strength tensor and Aμ is the vector
potential. In the Lorentz gauge (∂μAμ = 0) the vector potential satisfies the field equation

�Aμ = 4πJμ, (3)

where Jμ(x), the current density, is given by

Jμ(x) = e

∫
vμ(τ)δ(4)(x − z(τ )) dτ. (4)

Equations (1)–(4) give a complete description of the coupled particle-field system.
We can decompose each solution to the field equation (3) into the sum of an

inhomogeneous solution, which describes the potential generated by the particle, and a
homogeneous solution, which describes freely propagating radiation. It is useful to perform
this decomposition in two different ways:

Aμ = Aμ
r + Aμ

in = Aμ
a + A

μ
out, (5)

where A
μ
r and A

μ
a are the retarded and advanced potentials generated by the particle, and A

μ
in

and A
μ
out describe incoming and outgoing radiation. The retarded and advanced potentials are

given by

Aμ
r (x) =

∫
Dr(x − x ′)J μ(x ′) d4x ′, (6)

2
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Aμ
a (x) =

∫
Da(x − x ′)J μ(x ′) d4x ′, (7)

where Dr(x) and Da(x) are the retarded and advanced Green functions for the inhomogeneous
wave equation:

Dr(x) = 2θ(x0)δ(x · x) = |x|−1δ(x0 − |x|), (8)

Da(x) = 2θ(−x0)δ(x · x) = |x|−1δ(x0 + |x|). (9)

Using the decompositions of the vector potential given in equation (5), we can express the
field-strength tensor and the electromagnetic force as

Fμν = Fμν
r + Fμν

in = Fμν
a + F

μν
out , (10)

K
μ

f = Kμ
r + Kμ

in = Kμ
a + K

μ
out, (11)

where, for example,

Fμν
r = ∂μAν

r − ∂νAμ
r , Kμ

r (τ ) = eFμν
r (z(τ ))vν(τ ). (12)

Physically, K
μ
in describes the force exerted on the particle by incoming radiation, and K

μ
r

describes the self-force exerted on the particle by its own retarded field. In what follows, we
will assume that there is no incoming radiation, so K

μ
in = 0 and K

μ

f = K
μ
r .

We can obtain an explicit expression for the self-force by combining equations (4), (6) and
(12). To perform the calculation it is useful to express the self-force in the form K

μ
r = K

μ
+ +K

μ
−,

where K
μ
± ≡ (1/2)

(
K

μ
r ± K

μ
a

)
. As was first shown by Dirac [4] (see also [3], pages 187–9),

the component K
μ
− is well defined and is given by

K
μ
− = mτ0(ȧ

μ + (a · a)vμ), (13)

where ȧμ ≡ daμ/dτ and τ0 ≡ (2/3)(e2/m). The component K
μ
+ , however, is infinite. The

reason for this can be traced to the fact that the retarded fields of a point particle diverge as we
approach the particle; for a spatially extended particle, one can show that K

μ
+ is finite and is

given by

Kμ
+ = −mSa

μ + · · · , (14)

where mS is the self-energy of the particle and the dots indicate additional terms that vanish in
the point particle limit. We derive an expression for the self-energy of a spherically symmetric
particle in appendix A, but for now we simply note that the self-energy scales like 1/σ , where
σ is the particle size, and therefore diverges in the point particle limit. Thus, in order to obtain
a finite expression for the self-force, let us assume that the particle is spatially extended, but
small enough that K

μ
− is well approximated by equation (13) and K

μ
+ is well approximated by

the first term of equation (14):

Kμ
r = K

μ
− + Kμ

+ = mτ0(ȧ
μ + (a · a)vμ) − mSa

μ. (15)

Substituting this result into equation (1), we find that the equation of motion for the particle is

maμ = mτ0(ȧ
μ + (a · a)vμ) − mSa

μ + K
μ
ext. (16)

Here m is the bare mass of the particle; that is, the mass that the particle would have if its
charge were set to zero. Let us define a renormalized mass mR ≡ m + mS and a renormalized
time constant τR ≡ (m/mR)τ0 = (2/3)(e2/mR). We can then express the equation of motion
as

aμ − τRȧμ = τR(a · a)vμ + (1/mR)K
μ
ext. (17)

3
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This is the Lorentz–Dirac equation. We derived this equation by considering a small spatially
extended particle, but it is well defined in the point particle limit, provided we hold mR constant
and allow m to diverge in order to compensate for the divergence of mS .

It is instructive to consider the low-velocity limit of the Lorentz–Dirac equation:

a − τR ȧ = (1/mR)Kext, (18)

where ȧ ≡ da/dt . An ordinary equation of motion is second order in time, and thus requires
initial conditions z0 and v0 for the position and velocity, but since equation (18) is third order
in time we need an additional initial condition a0 for the acceleration. If a0 is not chosen
properly we obtain unphysical runaway solutions. We can see this for the case of a free particle
(Kext = 0), for which the solution to equation (18) is

a(t) = a0 et/τR . (19)

Thus, unless a0 = 0 we obtain a runaway solution in which the acceleration increases
exponentially in time. We can eliminate the runaway solutions by expressing the solution
to equation (18) in terms of a Green function G(t):

a(t) = (1/mR)

∫
G(t − t ′)Kext(t

′) dt ′, (20)

where G(t) is defined such that G(t) → 0 for t → ±∞ and

G(t) − τRĠ(t) = δ(t). (21)

Let G̃(ω) denote the Fourier transform of G(t). From equation (21), it follows that

G̃(ω) =
∫

G(t) eiωt dt = (1 + iτRω)−1, (22)

G(t) = (2π)−1
∫

G̃(ω) e−iωt dω = (1/τR)θ(−t) et/τR . (23)

We can view equation (20) as a new equation of motion for the particle. By its construction
it is a solution to equation (18), so integrating equation (20) subject to the initial conditions
{z0, v0} is equivalent to integrating equation (18) subject to the initial conditions {z0, v0, a0},
where a0 is given by

a0 = (mRτR)−1
∫ ∞

0
e−t ′/τR Kext(t

′) dt ′. (24)

In effect, equation (20) selects the initial condition a0 so as to eliminate the runaway
solutions. We can see this for the case of a free particle: when Kext = 0,
equation (24) sets a0 = 0. Note that since G(t) > 0 for t < 0, equation (20) exhibits
advanced effects, in which the acceleration of the particle at time t depends on the value of the
external force at times t ′ > t .

For simplicity, we have shown how the runaway solutions can be eliminated in the low-
velocity limit, but the same method can be applied to the full relativistic Lorentz-Dirac equation
(see section 6.6 of [1], section 5.6 of [3], and [5]). The resulting equation of motion is

aμ(τ) =
∫ ∞

τ

e−(τ ′−τ)/τR
(
(a(τ ′) · a(τ ′))vμ(τ ′) + (mRτR)−1K

μ
ext(τ

′)
)

dτ ′. (25)

Note that aμ(τ) depends on the value of K
μ
ext(τ

′) at proper times τ ′ > τ , so equation (25) also
exhibits advanced effects.

4
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3. Extended particles in electrodynamics

We can gain some insight into the origin of the advanced effects by generalizing equation (25)
to the case of a spatially extended particle of arbitrary size. For simplicity, let us consider an
extended particle that is spherically symmetric. The current density is then given by

Jμ(x) = e

∫
(1 − a(τ) · (x − z(τ )))f (−(x − z(τ ))2)vμ(τ )δ(v(τ ) · (x − z(τ ))) dτ, (26)

where e is the total charge of the particle and f (r2) describes the radial charge distribution
(this expression for the current density is derived in section 7.4 of [1]). It is convenient to
express the current density in the form

Jμ(x) =
∫

J̄ μ(x, τ ) dτ, (27)

where

J̄ μ(x, τ ) ≡ e(1 − a(τ) · (x − z(τ )))f (−(x − z(τ ))2)vμ(τ )δ(v(τ ) · (x − z(τ ))). (28)

Note that J̄ μ(x, τ ) vanishes unless xμ lies in the plane of simultaneity for proper time τ . We
can describe the coupling of the particle to the electromagnetic field using the action

Si = −
∫

Aμ(x)Jμ(x) d4x =
∫

Li dτ, (29)

where

Li = −
∫

Aμ(x)J̄ μ(x, τ ) d4x (30)

is the corresponding Lagrangian. From the Euler–Lagrange equations, it follows that the
electromagnetic force on the extended particle is

K
μ

f (τ) =
∫

Fμν(x)J̄ ν(x, τ ) d4x. (31)

As before, we can separate the electromagnetic force into a component K
μ
r that describes the

self-force and a component K
μ
in that describes the force exerted on the particle by incoming

radiation. Using equation (6) to solve for A
μ
r (x) in terms of the current density, we find that

the self-force is given by

Kμ
r (τ ) =

∫
Fμν

r (x)J̄ ν(x, τ ) d4x =
∫

K̄μ
r (τ, τ ′) dτ ′, (32)

where we have defined

K̄μ
r (τ, τ ′) ≡

∫∫
J̄ α(x, τ )μ

αβ(x, x ′)J̄ β(x ′, τ ′) d4x d4x ′ (33)

and

μ
αβ(x, x ′) ≡ (

ηαβ∂μ − ημ
β∂α

)
Dr(x − x ′). (34)

If we assume that there is no incoming radiation, the equation of motion for the extended
particle is

maμ = Kμ
r + K

μ
ext, (35)

where K
μ
r is given by equation (32) and K

μ
ext describes an arbitrary externally imposed

force. This is a second-order integro-differential equation; it is exact, and holds for extended
particles of arbitrary size. The equation of motion (25) that we derived in the previous section
should approximate this equation of motion in the limit of a small particle (the parameters

5
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(a) (b)

Figure 1. Spacetime diagrams, which illustrate pairs of events xμ and x′μ that give nonzero
contributions to K̄

μ
r (τ, τ ′). The thick solid curves indicate the particle trajectory, the thin solid

lines indicate the planes of simultaneity for proper times τ and τ ′, the dashed lines indicate the
light-like interval between events xμ and x′μ. (a) Conditions (1)–(3) are satisfied for τ > τ ′,
corresponding to retarded effects. (b) Conditions (1)–(3) are satisfied for τ < τ ′, corresponding
to advanced effects.

mR = m + mS and τR = (2/3)(e2/mR) that appear in equation (25) are set by the self-energy
mS , which can be obtained from f (r2) using equation (A.10)).

In general, the self-force acting on the particle at proper time τ depends on the state of
the particle at proper times both earlier and later than τ . We can understand this by examining
equation (33) for K̄

μ
r (τ, τ ′). From the three factors in the integrand, it follows that K̄

μ
r (τ, τ ′)

vanishes unless three conditions are met: (1) there is an event xμ within the world cylinder of
the particle that lies on the plane of simultaneity for proper time τ , (2) there is an event x ′μ

within the world cylinder of the particle that lies on the plane of simultaneity for proper time
τ ′, (3) events xμ and x ′μ are light-like separated, with x ′μ earlier than xμ. There are retarded
effects when K̄

μ
r (τ, τ ′) is nonzero for τ > τ ′, and advanced effects when it is nonzero for

τ < τ ′ (see figure 1).
We can give a concrete example that illustrates these conditions by considering a uniformly

accelerated particle in (1+1) dimensions. The position, velocity and acceleration of the particle
are given by

zμ(τ ) = a−1e
μ

1 (τ ), vμ(τ ) = e
μ

0 (τ ), aμ(τ ) = ae
μ

1 (τ ), (36)

where

e
μ

0 (τ ) ≡ (cosh aτ, sinh aτ), e
μ

1 (τ ) ≡ (sinh aτ, cosh aτ). (37)

Note that e0 · e0 = −e1 · e1 = 1 and e0 · e1 = 0. It is convenient to define a new coordinate
system (λ, u) by

xμ(λ, u) = zμ(λ) + ue
μ

1 (λ) = (a−1 + u)e
μ

1 (λ). (38)

The trajectory of the particle is then given by zμ(τ ) = xμ(τ, 0), and the plane of simultaneity
for proper time τ is given by xμ(τ, u); note that the planes of simultaneity for all values of
τ pass through the origin at u = −1/a. Equation (28) for J̄ μ(x, τ ) generalizes naturally to
(1 + 1) dimensions; from the above expressions, it follows that

J̄ μ(x, τ ) = e(1 + au)f (u2)e
μ

0 (τ )δ(λ − τ). (39)

We will assume that f (u2) > 0 for u < R and f (u2) = 0 for u > R, so the trajectories of the
left and right edges of the particle are given by z

μ
−(λ) ≡ xμ(λ,−R) and z

μ
+ (λ) ≡ xμ(λ, +R).

6
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Figure 2. Spacetime diagrams for a uniformly accelerated particle of radius R. Black curve:
particle trajectory zμ. Blue curves: trajectories z

μ
− and z

μ
+ of the left and right edges of the

particle. Red lines: trajectories L
μ
+ and L

μ
−. Green lines: planes of simultaneity P± for τ = ±1/4.

(a) aR = 1/2. (b) aR = 3/2.

If aR < 1, then the charge density is positive in the region between the trajectories z
μ
−

and z
μ
+ , and zero everywhere else (see figure 2(a)). Thus, conditions (1)–(3) are met only

if τ > τ ′. If aR > 1, then the situation is more complicated. Let us define trajectories
L

μ
±(λ) = (λ,±|λ|); these trajectories define the left and right edges of the forward and

backward light cones for the origin. Also, let us define R+ to be the region between L
μ
+ and

z
μ
+ , and R− to be the region between z

μ
− and L

μ
−. The charge density is positive in the region

R+, negative in the region R−, and zero everywhere else (see figure 2(b)). Thus, conditions
(1)-(3) are always met: the events xμ and x ′μ lie in region R+ if τ > τ ′, and in region R− if
τ < τ ′.

4. The toy model of electrodynamics

We can gain further insight into the advanced effects by comparing ordinary electrodynamics
with a toy model of electrodynamics in which advanced effects do not occur. A complete
description of the model is given in [6], but all the results that we will need are summarized
here.

The toy model that we will be considering describes a spatially extended particle in
(1 + 1) dimensions that obeys Newtonian dynamics and is coupled to a pair of fields E(t, x)

and B(t, x), which correspond to the electric and magnetic fields of ordinary electrodynamics.
The equations of motion for these fields are

∂tE(t, x) = ∂xB(t, x), (40)

∂tB(t, x) = ∂xE(t, x) − 2ρ(t, x), (41)

where ρ(t, x) is the charge density. We will assume that the charge density has the form

ρ(t, x) = gf (x − z(t)), (42)

7
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where z(t) is the position of the particle at time t, g is its charge and f (x) describes the charge
distribution. The equation of motion for the particle is

mz̈ = Ff + Fext, (43)

where m is the particle mass,

Ff (t) = −2
∫

ρ(t, x)E(t, x) dx (44)

is the force that the E-field exerts on the particle and Fext describes an arbitrary externally
imposed force. Equations (40)–(44) give a complete description of the coupled particle-field
system. Equations (40) and (41) can be thought of as the analogs to Maxwell’s equations and
equation (44) can be thought of as the analog to the Lorentz force law.

By analogy with electrodynamics, we can express the E and B fields in the form

E(t, x) = Er(t, x) + Ein(t, x), B(t, x) = Br(t, x) + Bin(t, x), (45)

where Er(t, x) and Br(t, x) are the retarded fields generated by the particle, and Ein(t, x) and
Bin(t, x) describe incoming radiation (see [7]). The retarded fields are given by

Er(t, x) = ∂xφr(t, x), Br(t, x) = ∂tφr(t, x), (46)

where

φr(t, x) ≡ −
∫∫

Dr(t − t ′, x − x ′)ρ(t ′, x ′) dt ′ dx ′ (47)

and Dr(t, x) = θ(t −|x|) is the retarded Green function for the inhomogeneous wave equation
in (1 + 1) dimensions. Using the decompositions given in equation (45), we can express the
force exerted by the field as Ff = Fin + Fr , where

Fin(t) = −2
∫

ρ(t, x)Ein(t, x) dx, (48)

Fr(t) = −2
∫

ρ(t, x)Er(t, x) dx. (49)

Physically, Fin describes the force exerted on the particle by incoming radiation, and Fr

describes the self-force exerted on the particle by its own retarded field. In what follows we
will assume that there is no incoming radiation, so Fin = 0 and Ff = Fr .

Using equations (46), (47) and (49), we can evaluate the self-force explicitly for the case
of a point particle, for which f (x) = δ(x):

Fr = −mγ ż(1 − ż2)−1, (50)

where γ ≡ 2g2/m is a damping constant. From equations (43) and (50), we find that the
equation of motion is

z̈ + γ ż(1 − ż2)−1 = (1/m)Fext. (51)

This is the toy model analog to the Lorentz–Dirac equation (17) for electrodynamics. If we
compare equation (51) with the Lorentz–Dirac equation, we note three important differences.
First, the Lorentz–Dirac equation is of third order, but equation (51) is only of second order,
and thus it does not admit runaway solutions and does not need to be replaced with an integro-
differential equation. In the toy model the acceleration of a point particle at time t only
depends on the value of Fext at time t, and there are no advanced effects. Second, for the
Lorentz–Dirac equation there is a radiation damping term proportional to the time derivative of
the acceleration, while for equation (51) the damping term is a function of the particle velocity.

8
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Figure 3. Spacetime diagram, which illustrates a pair of events (t, x) and (t ′, x′) that give a
nonzero contribution to F̄ r (t, t

′). The thick solid curve indicates the particle trajectory; the thin
solid lines indicate the planes of simultaneity for times t and t ′; the dashed line indicates the
light-like interval between events (t ′, x′) and (t, x).

For electrodynamics, a velocity-dependent damping term is ruled out by Lorentz invariance,
but the toy model is neither Lorentz nor Galilean invariant; there is a preferred reference frame
in which the equations of motion for the model are valid, and a particle moving with respect
to this preferred frame feels a velocity-dependent drag force. Third, the mass that appears
in the Lorentz–Dirac equation is the renormalized mass, the sum of the bare mass and the
self-energy, while the mass that appears in equation (51) is just the bare mass; there is no
self-energy contribution. We will explain the reason for this in section 5.1.

5. Extended particles in the toy model

Let us now consider a spatially extended particle in the toy model. From equations (46), (47)
and (49), it follows that the self-force for an extended particle is given by

Fr(t) =
∫

F̄ r (t, t
′) dt ′, (52)

where we have defined

F̄ r (t, t
′) = 2

∫∫
ρ(t, x)∂xDr(t − t ′, x − x ′)ρ(t ′, x ′) dx dx ′. (53)

Equations (52) and (53) are the toy model analogs of equations (32) and (33) for ordinary
electrodynamics. Note, however, that whereas K̄r (τ, τ

′) can be nonzero for either τ > τ ′ or
τ < τ ′, the analogous quantity F̄ r (t, t

′) is only nonzero if t > t ′. Physically, this is due to the
fact that the particle obeys Newtonian dynamics, so the planes of simultaneity do not tilt (see
figure 3, and compare with figure 1 for electrodynamics). In what follows, we will assume
that the charge distribution of the extended particle is

f (x) = (2πσ 2)−1/2 e−x2/2σ 2
, (54)

where σ describes the particle size. If we substitute equation (54) into equation (53), we find
that

F̄ r (t, t
′) = (mγ/2

√
πσ)θ(t − t ′)(e−(z(t)−z(t ′)+t−t ′))2/4σ 2 − e−(z(t)−z(t ′)+t ′−t)2/4σ 2

). (55)

The equation of motion for an extended particle is

mz̈ = Fr + Fext, (56)

9
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where Fr is given by equation (52) and Fext describes an externally imposed force. This is
the toy model analog to equation (35), the equation of motion for an extended particle in
electrodynamics. Like equation (35), it is a second-order integro-differential equation that
is exact and holds for extended particles of arbitrary size. Given the velocity v0 at time t0,
together with the particle trajectory z(t) at all times t � t0, equation (56) can be integrated to
obtain the particle trajectory at all times.

5.1. Approximate equation of motion

We can further develop the analogy between the toy model and electrodynamics by performing
a series expansion of the self-force for an extended particle. If we substitute equation (53)
into equation (52) and perform the integral over t ′, we find that

Fr(t) = −2
∫∫

ε(x − x ′)ρ(t, x)ρ(t − |x − x ′|, x ′) dx dx ′. (57)

Let us expand ρ(t − |x − x ′|, x ′) in |x − x ′|:

ρ(t − |x − x ′|, x ′) =
∞∑

n=0

(1/n!)(−1)n|x − x ′|n∂n
t ρ(t, x ′). (58)

If we assume that the particle is moving slowly, then we can neglect terms that are nonlinear
in z(n)(t) ≡ dnz(t)/dtn:

ρ(t − |x − x ′|, x ′) = ρ(t, x ′) −
∞∑

n=1

(1/n!)(−1)n|x − x ′|nz(n)(t)∂x ′ρ(t, x ′). (59)

Substituting equation (59) into equation (57), we find that

Fr(t) = −mγ

∞∑
n=0

(−1)ncnσ
nv(n)(t), (60)

where v(n) ≡ dnv(t)/dtn, v = ż is the particle velocity, and

cn ≡ (1/n!σn)

∫∫
|x − x ′|nf (x)f (x ′) dx dx ′ = 2n

√
π

�(n/2 + 1/2)

�(n + 1)
(61)

are dimensionless coefficients. The first few terms of equation (60) are

Fr = −mγv − mSv̇ + mτ0v̈ + · · · , (62)

where mS ≡ −(4/
√

π)g2σ and τ0 ≡ −2g2σ 2/m. The first term is just the low-velocity limit
of the self-force for a point particle, and the second term describes the self-energy mS . Since
the self-energy is proportional to the particle size, it vanishes in the point particle limit, which
explains why it is the bare mass, rather than the renormalized mass, that appears in the point
particle equation of motion (51).

It is instructive to compare equation (62) with the the low-velocity limit of the
electrodynamic self-force given in equation (15):

Kr = −mSa + mτ0ȧ + · · · , (63)

where the dots indicate terms that vanish in the point particle limit. Note that for
electrodynamics the term proportional to the velocity is not present (as we discussed before,
such a term is ruled out by Lorentz invariance). Also, the self-energy mS and time constant
τ0 are both negative for the toy model, but positive for electrodynamics. These quantities
also scale differently in the two theories: for the toy model, mS ∼ σ and τ0 ∼ σ 2, whereas

10
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for electrodynamics mS ∼ 1/σ and τ0 is independent of the particle size. Thus, in the point
particle limit,

Fr → −mγv, Kr → −mSa + mτ0ȧ. (64)

For a small enough particle, we can obtain a good approximation to equation (60) by
truncating the series at some finite order N:

Fr = −mγ

N−1∑
n=0

(−1)ncnσ
nv(n). (65)

Thus, we obtain an approximate equation of motion for the particle,

v(1) + γ

N−1∑
n=0

(−1)ncnσ
nv(n) = (1/m)Fext. (66)

This should be a good approximation to the exact equation of motion (56) provided the particle
is small and slowly moving. Since this equation is of order N, we need initial conditions z(n)(0)

for n = 0, 1, . . . , N − 1.
We can find the solutions to equation (66) for the special case Fext = 0:

v(t) =
N−1∑
k=1

Ak e−βkt/σ , (67)

where the constants A1, . . . , AN−1 are set by the initial conditions, the constants β1, . . . , βN−1

are the N − 1 roots of the polynomial

p(β) = β − η

N−1∑
n=0

cnβ
n, (68)

and η ≡ γ σ is a dimensionless measure of the particle size. Note that some of the roots may
be complex, and if so then the initial conditions must be chosen such that v(t) is real (the
fact that there are complex roots suggests that there are oscillatory solutions to the equation
of motion; examples of such solutions are given in appendix B). Also, note that if Re βk < 0
and Ak �= 0, then we obtain a runaway solution in which the velocity increases exponentially
in time. We can solve for the roots in the limit of small particle size (η 	 1):

βk = e2π i(k−1)/(N−2)(ηcN−1)
−1/(N−2) for k = 1, . . . , N − 2 (69)

βN−1 = η. (70)

Note that for N � 4 there is at least one root that yields a runaway solution. For the case
N = 3 we can calculate the roots exactly and write the solutions explicitly; this is done in
appendix C.

5.2. The integro-differential approximate equation of motion

As for electrodynamics, we can eliminate the runaway solutions by replacing the approximate
equation of motion (66) with an integro-differential equation. Let us define a Green function
G(t) by

G(1)(t) + γ

N−1∑
n=0

(−1)ncnσ
nG(n)(t) = δ(t). (71)

11
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We will assume that N � 3, so that the polynomial p(β) defined in equation (68) can be
factorized as follows:

p(β) = β − η

N−1∑
n=0

cnβ
n = −ηcN−1

N−1∏
n=1

(β − βn). (72)

Using this result, it is straightforward to show that the Fourier transform G̃(ω) of G(t) is

G̃(ω) =
∫

G(t) eiωt dt = − σ

p(iωσ)
= (cN−1γ )−1

N−1∏
k=1

(iωσ − βk)
−1. (73)

Thus, G(t) is given by

G(t) = (2π)−1
∫

G̃(ω) e−iωt dω =
N−1∑
k=1

Bk e−βkt/σ θ(εkt), (74)

where we have defined constants B1, . . . , BN−1 and ε1, . . . , εN−1 by

Bk ≡ −(εk/ηcN−1)
∏
j �=k

(βk − βj )
−1, εk ≡

{
+1 if Re βk > 0
−1 if Re βk < 0

(75)

Using the Green function, we can express the solution to the approximate equation of
motion (66) as an integro-differential equation:

v(t) = (1/m)

∫
G(t − t ′)Fext(t

′) dt ′ (76)

= (1/m)

N−1∑
k=1

Bk

∫
θ(εkτ ) e−βkτ/σFext(t − τ) dτ. (77)

As for electrodynamics, by expressing the solution to a higher-order equation of motion in
terms of a suitable Green function we have eliminated the runaway solutions; for example,
equation (76) implies that v(t) = 0 for Fext = 0. Note that terms with εk = 1 only depend on
the value of the external force at times t ′ < t , and thus describe retarded effects, while terms
with εk = −1 only depend on the value of the external force at times t ′ > t , and thus describe
advanced effects. The advanced effects are not present for the exact equation of motion (56);
rather, they are an artifact of the approximations used to obtain equation (76).

From equation (69), it follows that in the limit of small particle size there will be advanced
effects if N � 4. Let us compare this result with the analogous result for electrodynamics.
Recall that the low-velocity limit of the electrodynamic self-force is given by equation (63).
It is the point particle limit of this self-force that appears in the equation of motion (18),
which, as we showed in section 2, gives rise to advanced effects. But taking the point particle
limit of equation (63) is equivalent to truncating a series expansion of the self-force at order
N = 3. Thus, advanced effects show up at third order for electrodynamics, but only at
fourth order for the toy model. This can be understood by comparing equations (62) and (63)
for the self-forces in the two theories. For both theories, the sign of the third-order term is
determined by the sign of τ0: for electrodynamics τ0 is positive, corresponding to advanced
effects, while for the toy model τ0 is negative, corresponding to retarded effects. Also, note
that for the toy model the higher-order terms in the self-force vanish in the point particle limit,
and thus the spurious advanced effects exhibited by equation (76) go away in this limit. For
electrodynamics, however, the third-order term of the self-force is independent of the particle
size, and hence the advanced effects remain in the point particle limit.

12
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Figure 4. Graph of v(t) versus t/σ for an impulsive force (η = 0.25, v0 = 0.1). (a) Exact equation
of motion (56). (b) Approximate integro-differential equation of motion (76) with N = 4.

As an example, let us consider the special case of an impulsive force Fext(t) = mv0δ(t),
and compare the evolution predicted by the exact equation of motion (56) with the evolution
predicted by the approximate integro-differential equation of motion (76). Suppose that the
particle starts at rest at the origin, so z(t) = 0 for t � 0. The moment after the impulsive force
is applied, the velocity of the particle is v(0) = v0. We can numerically integrate the exact
equation of motion (56) subject to these initial conditions; the result is shown in figure 4(a),
where we have taken η = 0.25 and v0 = 0.1. As expected, there are no advanced effects: the
particle does not respond to the impulsive force until after it has been applied. We can also
describe the evolution of the particle using the approximate integro-differential equation (76).
If we substitute for Fext(t), we find that

v(t) = v0

N−1∑
k=1

Bk e−βkt/σ θ(εkt). (78)

In figure 4(b) this solution is shown for η = 0.25, v0 = 0.1, N = 4. Now there are advanced
effects: the particle accelerates before the impulsive force has been applied.

6. Conclusion

We have shown that the advanced effects in classical electrodynamics are due to the fact that
the planes of simultaneity for an extended particle can tilt in such a way that the self-force
exerted on the particle at proper time τ depends on the state of the particle at proper times
τ ′ > τ . We have also considered a toy model of electrodynamics in which the planes of
simultaneity do not tilt and have shown that it does not give rise to advanced effects.

We have derived three equations of motion for electrodynamics. Equation (35) is an exact
equation of motion for an extended particle; it is a second-order integro-differential equation
that exhibits advanced effects. Equation (17), the Lorentz–Dirac equation, approximates
equation (35) in the limit of a small particle; it is a third-order ordinary differential equation
and admits runaway solutions. Equation (25) is obtained from the Lorentz–Dirac equation by
choosing the initial conditions so as to eliminate the runaway solutions. It also approximates
equation (35) in the limit of a small particle, and like equation (35) it is a second-order
integro-differential equation that exhibits advanced effects.
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We have derived four equations of motion for the toy model, which can be viewed as
analogs to the various electrodynamic equations of motion. Equation (56) is an exact equation
of motion for an extended particle; it is a second-order integro-differential equation, and does
not exhibit advanced effects. Equation (51) is an exact equation of motion for a point particle;
it is a second-order ordinary differential equation and does not exhibit advanced effects.
Equation (66) approximates equation (56) in the limit of a small particle; it is an ordinary
differential equation of order N, and admits runaway solutions for N � 4. Equation (76) is
obtained from equation (66) by choosing the initial conditions so as to eliminate the runaway
solutions; it is a first-order integro-differential equation, and exhibits spurious advanced effects
for N � 4.

Appendix A. Self-energy of an extended particle

In this appendix we show that the self-force given in equation (32) can be used to derive the
correct expression for the self-energy of a spatially extended particle. To accomplish this,
we will use equation (32) to calculate the self-force that acts on a spatially extended particle
undergoing uniformly accelerated motion. For simplicity we will work to first order in the
acceleration and calculate the self-force at the moment at which the particle is instantaneously
at rest. The trajectory, velocity and acceleration of the particle are

zμ(τ ) = (τ, aτ 2/2), vμ(τ ) = (1, aτ), aμ(τ ) = (0, a). (A.1)

From equation (28), we find that

J̄ μ(x, τ ) = e(1 + a · x)f (|x − z(τ )|2)vμ(τ )δ(t − (1 + a · x)τ ), (A.2)

where t ≡ x0. Substituting J̄ μ(x, τ ) into equation (27), we find that the current density is
given by

Jμ(x) = e

∫
f (|x − z(τ )|2)vμ(τ )δ(τ − (1 + a · x)−1t) dτ, (A.3)

so J 0(x) = ρ(t, x) and J(x) = atρ(t, x), where we have defined

ρ(t, x) ≡ ef (|x − at2/2|2). (A.4)

Note that

J̄ μ(x, 0) = (1 + a · x)ρ(0, x)δμ
0δ(t). (A.5)

Substituting equation (A.5) into equation (32), we find that the self-force at τ = 0 is

Kr (0) =
∫

ρ(0, x)Er (0, x) d3x +
∫

a · xρ(0, x)Er (0, x) d3x, (A.6)

where Er (t, x), the retarded electric field, is given by

Er (t, x) = −∇A0
r (t, x) − ∂tAr (t, x), (A.7)

and A
μ
r (x), the retarded vector potential, can be obtained from the current density Jμ(x) via

equation (6). After a lengthy but straightforward calculation, we find that

Er (t, x) = −∇
∫

|x − x′|−1ρ(t, x′) d3x ′ −
∫ (

a|x − x′|−1 − 1

2
(a · ∇)∇|x − x′|

)
ρ(t, x′) d3x ′.

(A.8)
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Figure B1. Graph of v(t) versus γ t for an impulsive force (v0 = 0.1). Red curve: γ σ = 0.25.
Green curve: γ σ = 0.5. Blue curve: γ σ = 1.0.

Substituting this result into equation (A.6), we find that the self-force is

Kr (0) = −mSa, (A.9)

where the self-energy mS is given by

mS = (e2/2)

∫∫
|x − x′|−1f (|x|2)f (|x′|2) d3x d3x ′. (A.10)

It is interesting to note that the Abraham-Lorentz self-force corresponds to just the first
term of equation (A.6), and gives an incorrect value of (4/3)mS for the self-energy (see
[8], and section 17.3 of [2]). The correct relativistic expression for the self-force given in
equation (32) modifies this result by producing the second term of equation (A.6), which
evaluates to −(1/3)mS and combines with the first term to give the correct value for the
self-energy.

Appendix B. Example solutions for a spatially extended particle

In this appendix we consider some example solutions to equation (56), the exact equation of
motion for an extended particle in the toy model. Note that one region of an extended particle
can cause a change in the field that acts back on a different region of the particle at a later
time; as we shall see, if the particle is large enough the delay between these events can lead to
oscillatory behavior.

As for the example in section 5.2, we will assume that the particle is initially at rest at
the origin, and that it is driven with an impulsive force Fext(t) = mv0δ(t); this is equivalent to
taking the initial conditions of the particle to be v(0) = v0, z(t) = 0 for t � 0. We numerically
integrate the equation of motion (56) subject to these initial conditions, and plot v(t) versus
γ t in figure B1. Curves are shown for three different values of the particle size σ . Note that
the renormalized mass of an extended particle is mR = m + mS = (1 − 2γ σ/

√
π)m, so for

the curve with γ σ = 1 the renormalized mass is negative.
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Appendix C. Solution for N = 3

Here we find the solutions to equation (66), the approximate equation of motion for the toy
model, for the case N = 3. We will assume there is no external driving force (Fext = 0), so
we can express the equation of motion as

v̇ = −γRv + τRv̈, (C.1)

where τR ≡ (m/mR)τ0, γR ≡ (m/mR)γ,mR ≡ m + mS . The solutions are given by

v(t) = (α+ − α−)−1((α+v0 + a0) e−α−t − (α−v0 + a0) e−α+t ), (C.2)

where α± ≡ −(1/2τR)(1 ± (1 + 4γRτR)1/2), and v0 and a0 are the initial velocity and
acceleration.
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